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Abstract 
 The surface and leaky-wave modes supported by a grounded dielectric slab covered with 
graphene are studied. The dispersion curves of these modes are obtained by using an equivalent 
transmission line model. It is found that the surface and leaky-wave modes are profoundly 
influenced by the presence of conductive graphene. The tunability of the leaky modes through the 
chemical potential is explored and suggested as a possibility for a steerable leaky-wave antenna. 
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1. Introduction 
 
 Recently, many research efforts have been dedicated to graphene, a 2D material with 
unique physical properties. While the electronic properties of graphene have received a great deal of 
attention towards the development of nanoscale devices, little research has been done regarding its 
electromagnetic properties at the macroscopic scale. The most important of studies in the area 
include the analysis of surface waves guided along a graphene sheet [1] and the recent 
demonstration of non-reciprocal gyrotropy in graphene [2]. This paper investigates the surface and 
leaky-wave modes supported by a grounded dielectric slab covered with graphene. 
 

2. Physical Structure and Field Solution 
 
 The structure studied is shown in Fig. 1. It consists of a grounded dielectric slab of 
thickness d covered with a sheet of graphene. Graphene is modeled as a zero-thickness sheet with 
surface conductivity [3] 
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where e is the electron charge, kB is the Boltzmann’s constant, h is the Planck’s constant, T is the 
temperature, ω is the angular frequency, Γ is the scattering rate and µc is the chemical potential. 
 

 
Figure 1: Graphene sheet covering a grounded dielectric slab of thickness d. Region 1 corresponds 
to the air while region 2 corresponds to the dielectric slab. 
 
 The field solution to the problem of Fig. 1 is separated into TEz and TMz modes, which 
have zero electric and magnetic field components along the z-axis, respectively. The development 
for the TEz modes is presented below. The TMz modes are obtained by a similar procedure. 
Consider a TEz mode propagating along the x-axis with wavenumber kx. Taking into account that 



Ez=0 and ky=0, the Maxwell Gauss equation, ∇⋅E=j(kxEx+kyEy+kzEz)=0, yields Ex=0. Therefore, the 
electric field has only a y component and the Maxwell curl equations take the form 
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1,2 1,2z xk k k= −  and the subscript 1 or 2 denotes the corresponding region. 

 
Equations (2) are equivalent to the telegrapher’s equations in transmission line theory if we 

define the voltage as V1,2=Ey1,2 and the current as I1,2=−Hx1,2. Then, the wavenumber for propagation 
along the z-axis is kz1,2 and the characteristic impedance Z01,2=ωµ1,2/kz1,2. The structure of Fig. 1 can 
therefore be modeled by the transmission line equivalent circuit shown in Fig. 2. To model the 
graphene sheet, notice that it supports a surface current Jy=σEy. By inserting this current into the 
boundary condition 1 2

ˆ ( )× − =n H H J  at the air-dielectric interface, where ˆ ˆ= −n z , we get  

σEy=Hx2-Hx1, or in terms of the equivalent voltages and currents, V=(I1-I2)/σ. This allows the 
graphene sheet to be modeled by a simple shunt impedance  1/σ. 
 

 
 

Figure 2 : Transmission line equivalent model for the structure of Fig. 1. The grounded dielectric 
slab is modeled by a short-circuited transmission line of length d while the graphene sheet is 
modeled by a simple shunt impedance. 
 
 The field in any of the regions 1 and 2 in Fig. 1 may be expressed as the superposition of 
two waves travelling along ±z directions. However, the surface waves and the leaky waves exist 
without any incident wave (a wave propagating along the +z direction) and, therefore, the field in 
region 1 consists of only a reflected wave, propagating along the −z direction. The existence of a 
reflected wave without an incident one is only possible when the reflection coefficient is infinite. 
Thus, the surface and leaky waves are found from the poles of the reflection coefficient. The latter 
is found from the transmission line model of Fig. 2 as 

 01 02 2 01

01 02 2 01

(1

(1

) tan( )

) tan( )
z

z

Z Z k d Z

Z Z k d
R

j Z

j σ
σ

−

+

+
=

+
, (3) 

and its poles are the solutions to the equation 
 01 01 02 2(1 ) tan( ) 0zj Z Z kZ dσ+ + = . (4) 

 

3. Results and Discussion 
 
 Dispersion curves for the modes supported by the structure of Fig. 1 are shown in Fig. 3 for 

both the TEz and TMz cases. Because of 
2 2

1 1z xkk k= −  and the ambiguity in the sign of the square 

root, two sets of modes exist: proper modes with Im{kz1}<0, which decrease exponentially as we 
move away from the structure along the z-axis, and improper modes with Im{kz1}>0, which increase 



exponentially as we move away from the structure along the z-axis. Notice that there is no such 
ambiguity for kz2 since (4) is an even function of kz2. 
 

 
Figure 3: Dispersion curves for the surface and leaky wave modes supported by the structure of 
Fig.1, for ε2=2, d=10 mm, µc=0 eV and T=300 K. (a) Re{kx/k0} for the TEz modes. (b) Im{kx/k0} for 
the TEz modes. (c) Re{kx/k0} for the TMz modes. (d) Im{kx/k0} for the TMz modes. 
 
 The dispersion diagrams shown in Fig. 3 differ in several ways from the dispersion 
diagrams for the problem with no graphene sheet (e.g. [4]). In the TEz case presented in Fig. 3(a), 
the conductive layer of graphene is responsible for the appearance of a 1st order leaky-wave 
(characterized by only one maximum of the electric field in the substrate, not shown here) which is 
not present in the case without graphene. It is also noted that below the cutoff of the standard proper 
surface wave, corresponding to Re{kx}=k0, the dispersion curve is continuous and extends in the 
Re{kx}<k0 region, seeming to indicate the existence of a fast, proper wave. However, it is postulated 
that these solutions correspond to a wave incident on the grounded dielectric slab satisfying the 
Salisbury screen condition, hence for which there is no reflected wave. It is noted that the improper 
modes in the slow wave region Re{kx}>k0 are unphysical, because they are characterized by an 
exponential increase of the fields in the air region away from the dielectric slab while not providing 
radiation toward a real physical angle in space [5]. 
 

The fast and proper wave found in the TEz case is also present in the TMz case. While TMz 
leaky-wave modes are also present in the case without graphene, here these leaky-waves do not 
have a lower cutoff frequency. Additionally, the spectral gap between the upper cutoff frequency of 
these modes and the cutoff frequency of the surface modes is greatly reduced by the presence of 
graphene, a phenomenon similar to what is reported in [6].  

 



An important characteristic of graphene is tunable conductivity through µc, which provides 
control over the characteristics of the surface and leaky modes in the structure of Fig. 1. Figure 4 
depicts the effect of varying µc on kx for the left-most TMz leaky wave shown in figures 3(c) and 
3(d) for three different d/λ0 values. At low frequencies (d=0.33λ0), the tuning range of kx is large, 
but accompanied with high losses, as seen from Fig. 3(d). As the frequency increases, losses 
decrease, however with a simultaneous decrease in the tunability range on kx. This control over kx 
could be potentially used in the steering of the radiation angle of a leaky-wave antenna based on this 
structure. The tuning of µc may be realized by applying a DC voltage between graphene and the 
ground plane.  

 

 
Figure 4 : Value of kx versus the chemical potential µc for the left-most TMz leaky-wave shown in 
Figs. 3(c) and 3(d), for different values of d/λ0. (a) Re{kx/k0}. (b) Im{kx/k0}. 
 

4. Conclusion 
 

The surface and leaky-wave modes in a grounded dielectric slab covered with graphene 
have been investigated. The presence of the conductive graphene sheet changes considerably the 
modes dispersion characteristics compared to the case without graphene. Furthermore, the 
possibility of tuning the leaky-mode characteristics through the chemical potential has been 
explored. The potential application of this phenomenon in a steerable leaky-wave antenna has been 
suggested. 
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